AIR PUBLICATION 1582 C
Pilots Notes

PILOT'S NOTES

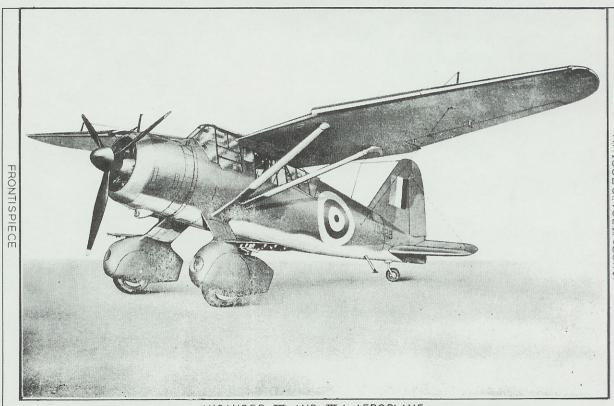
LYSANDER III AND III A AEROPLANES MERCURY XX ENGINE

Prepared by direction of the Minister of Aircraft Production

A. F. Toulands.

Promulgated by order of the Air Council.

Asternati


AIR MINISTRY.

AIR DATA PUBLICATIONS, ST. ANNES ON SEA, LANCASHIRE, GT. BRITAIN

085979055X (087418)

Pilot's Notes Lysander III and IIIA Aeroplanes Mercury XX Engine

CROWN COPYRIGHT. REPRODUCED BY PERMISSION OF THE CONTROLLER OF HER MAJESTY'S STATIONERY OFFICE

LYSANDER III AND III A AEROPLANE

NOTES TO OFFICIAL USERS

Air Ministry Orders and Vol. II leaflets as issued from time to time may affect the subject matter of this publication. It should be understood that amendment lists are not always issued to bring the publication into line with the orders or leaflets and it is for holders of this book to arrange the necessary link-up.

Where an order or leaflet contradicts any portion of this publication, an amendment list will generally be issued, but when this is not done, the order or leaflet must be taken as the over-riding authority.

Where amendment action has taken place, the number of the amendment list concerned will be found at the top of each page affected, and amendments of technical importance will be indicated by a vertical line on the left-hand side of the text against the matter amended or added. Vertical lines relating to previous amendments to a page are not repeated. If complete revision of any division of the book (e.g. a Chapter) is made this will be indicated in the title page for that division and the vertical lines will not be employed.

July, 1941

AIR PUBLICATION 1582C

Pilot's Notes

Amended by A.L.No.3

LIST OF SECTIONS

(A detailed Contents List is given at the beginning of each Section.)

Section 1 - Controls and equipment in Pilot's Cockpit

Section 2 - Handling and Flying Notes for Pilot

Issued with A.L.No.3

August, 1941

AIR PUBLICATION 1582C
Volume I
and
Pilot's Notes

SECTION 1

CONTROLS AND EQUIPMENT IN PILOT'S COCKPIT

LIST OF CONTENTS

	Para.
Introduction	1
Flying controls	2
Tail plane adjusting gear	3 4
Rudder bar adjustment	
Slats and flaps	5
Engine controls -	
Throttle and mixture controls	6
Airscrew pitch control	7
Cowling gills control	
Carburettor slow-running cut-out control	9
Air-intake control	10
Engine starter button	11
Fuel cock and tank	12
Priming pump and cock	13
Oil heating control	14
Gauges	15
Operational equipment -	
Guns and cannon	16
Gun, cannon and camera-gun control	17
Gun sights	18
Forced landing flares	19
Bomb and reconnaissance flare release control	20
Landing lamps	21
Camera sights and controls	22
Camera gun controls	25
R/T Equipment	26
Seating and exists -	
Access to cockpits	27
	28
Seat control	29
Miscellaneous -	30
Cockpit temperature control	74
Axe stowage	31 32
First-aid outfit	
Compass lamp and stowage	33 34
Instrument panel illumination	35
Armour plating	36
Ballast	
Locking tubes for aeroplane controls	37 38
TOTAL ANDRE TOT METOPIATE CONTINUES	20

CONTROLS AND EQUIPMENT IN PILOT'S COCKPIT

INTRODUCTION

1. The notes in this section deal with the location of important controls and equipment and, where necessary, describe their function and operation. The interior of the cockpit, with each item annotated, is illustrated in figs. 1 to 5 at the end of this section. A key to the numbers is given facing each illustration and where the items are referred to in the text the relevant key number is quoted in brackets.

AEROPLANE CONTROLS AND EQUIPMENT

- 2. Flying controls. These are the normal type, the spade grip of the control column carrying the usual brake control and parking lever (11) and also the selector control button (12) for the firing of either the fixed Browning guns or cannon. Provision is made for dual flying controls in the rear cockpit.
- 3. Tail plane adjusting gear. Counter-clockwise movement of the handwheel (10) at the port side of the cockpit decreases the incidence of the tail plane and at the same time the pointer of the indicator (16) is moved inboard.
- 4. Rudder bar adjustment. The rudder bar footplates (14) are adjustable for leg reach, the control being a knob (15) on the instrument panel.
- 5. <u>Slats and flaps</u>. Inboard and outboard slats which open and close automatically are fitted to the leading edges along the whole length of the main planes. The outboard slats operate independently of the inboard slats. The trailing edge flaps are connected to the inboard slats and the movements are governed automatically by the speed of the aeroplane. The lower the speed, the more the flaps are lowered and the inboard slats opened.

ENGINE CONTROLS

6. Throttle and mixture controls. - The throttle control (20) and the mixture control (18), together with a friction handwheel (19), are mounted in the quadrant at the port side of the cockpit. The quadrant is marked SHUT, CRUISING and RATED TAKE OFF for the throttle positions, and NORMAL and WEAK for the settings of the two-position automatic mixture control. Closing the throttle, or opening it more than half its travel on the quadrant, with the mixture control in the WEAK position, will bring the latter back to the NORMAL position.

LIST OF ILLUSTRATIONS

	Fl
Pilot's instrument panel - view to starboard	1
Pilot's instrument panel - view to port	2
Port side of pilot's cockpit	3
Starboard side of pilot's cockpit	5
Rear view of pilot's cockpit	-

- 7. Airscrew pitch control. The two-pitch control of the airscrew is operated by means of a red knob on the instrument panel. Pushing the knob in gives fine pitch.
- 8. Cowling gills control. The OPEN and CLOSED positions of the gills are shown by the sleeve (23) and the red pointer (24) at the starbaord side of the cockpit. Clockwise rotation of the handle, immediately above the indicator, will close the gills.
- 9. <u>Carbutter slow-running cut-out control</u>. This is a knob (22) at the port side of the instrument panel. The method of operation is given on a label adjacent to the knob.
- 10. Air-intake control. The control is a knob (21) at the starboard side of the cockpit. Operating instructions are given on a label alongside.
- 11. Engine starter button. The button (26) which is at the starboard side of the instrument panel, is protected against inadvertent operation by a hinged cover; the cover should be replaced in its original position after use.
- 12. Fuel cock and tank. The fuel cock handle (27) is on the port coaming of the cockpit. The ON and OFF positions are clearly marked to locate the setting of the painted portion of the handle at the forward end. The self-sealing fuel tank is behind the armoured bulkhead (61) at the rear of the cockpit.
- 13. Priming pump and cock. The fuel priming pump (28) and a 3-way priming cock (29) are on the starboard side of the instrument panel. The positions for the setting of the cock handle at OFF, PRIME CARBURETTOR and PRIME ENGINE are clearly indicated outside the mounting plate of the cock.
- 14. Oil heating control. The oil heating control knob (33) at the starboard side of the instrument panel is pulled out to increase the temperature of the oil while running up the engine.
- 15. Gauges. The fuel pressure gauge (30), for indicating the pressure at the carburettor inlet, the oil pressure gauge (34) and the oil temperature gauge (35) are all adjacent to the engine speed indicator (36) at the starbaord side of the instrument panel. The fuel contents gauge on the top of the tank in the rear cockpit is visible through the aperture (32) in the cockpit bulkhead; the gauge is illuminated by a lamp controlled by a switch located on the panel at the rear of the throttle quadrant on the port side of the cockpit.

OPERATIONAL EQUIPMENT

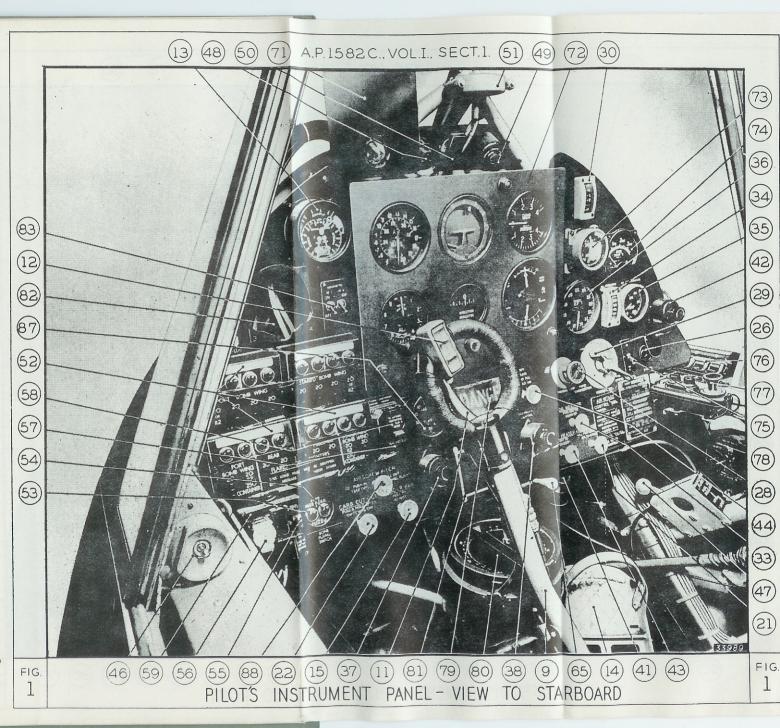
16. <u>Guns and cannon</u>. - There is a fixed Browning gun carried in each undercarriage fairing. Twin Browning guns are carried in the rear cockpit on all Lysander IIIA, and in some Lysander III aeroplanes. Each fixed Browning gun is provided with 500 rounds of ammunition, and each of the twin Browning guns with 1,000 rounds. Aditional armament consists of two 20 mm. Hispano fixed cannon, firing forward, these being

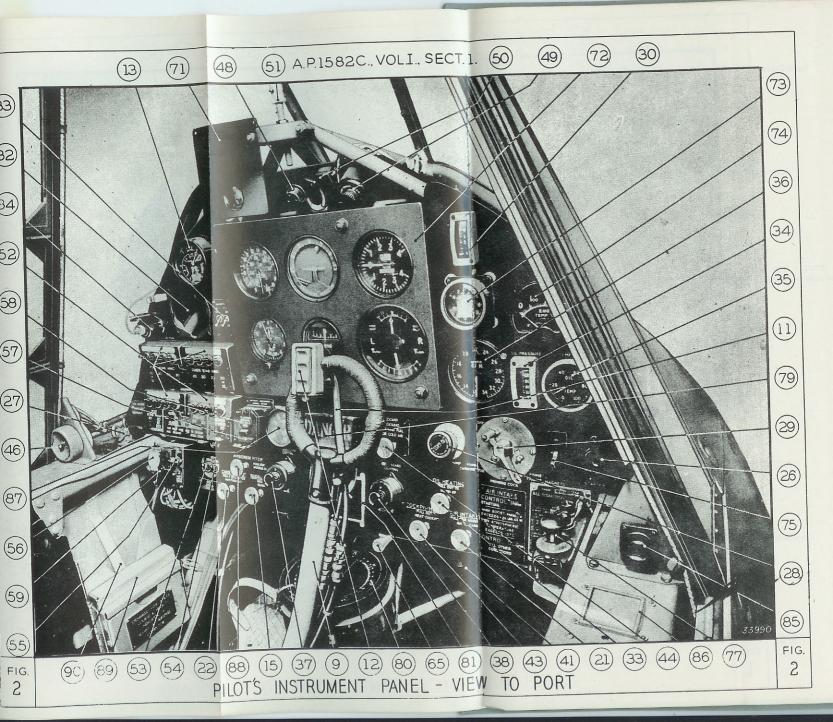
- mounted one on each side of the undercarriage. The small cantilever wings for carrying the bomb load are normally attached to the undercarriage legs and cannot be fitted when the cannon are installed.
- 17. Guns, cannon and camera-gun control. This control is a button on the control column spade grip. Early Lysander III and IIIa aeroplanes have a single button whilst later aeroplanes have a three-way type (12) to enable the fixed Browning guns or cannon to be fired together or independently. The SAFE and FIRE setting on the single button is governed by a rotatable ring and the three-way by a change-over toggle below the button. At the starboard setting of this toggle for FIRE a small indicator peg will project above the button. The camera control is that normally used for the guns. The air pressure available is indicated on the centre scale of the gauge (13). used for the brake system.
- 18. Gun sights. The socket (48), dimmer switch (49) and terminal block (50) are provided for use with the reflector type gun sight mounted above the instrument panel. A sliding sun screen for use with the sight is fitted over the centre panel of the windscreen. A ring and bead sight, which is fitted as an alternative, is mounted with the bead attached to the top of the engine cowling and with the ring (51) attached to the windscreen framework above the instrument panel. The reflector sight is adjustable, through its spherical attachment, as well as the ring and the bead, for alignment with the guns.
- 19. Forced-landing flares. A lever (47) working in a gated quadrant at the starboard side of the cockpit provides independent release of the two parachute flares which are carried in the rear fuselage on Lysander III aeroplanes only.
- 20. Bomb and reconnaissance flare release control. The bomb-firing pushbutton is at the end of the knob on the throttle lever (20) at the port side of the instrument panel. The pilot has control over a number of switchboxes comprising bomb selector switches (52), bomb nose and tail fuzing switches (53 and 54), the master bomb switch (55) and the jettison pushbuttons below the hinged covers (56 and 57) and on the switchboxes (58 and 59) respectively. The information concerning the bombs and containers carried on the light-series carrier fitted to Lysander III only, in the rear fuselage is given on labels below the switches. When reconnaissance flares or sighters are carried, the flares switch must be in the OFF position to prevent their release if the bombs are jettisoned; it should be noted that flares or sighters should not be released while the message hook is in the down position. Flares or sighters are not carried by Lysander IIIA aeroplanes.
- 21. <u>Landing lamps</u>. The 2-way switch (46) on the port coaming is provided to operate each lamp, in the undercarriage fairing independently.
- 22. <u>Camera sights and controls</u>. The pilot's remote controller and counter unit for operation of the F.24 camera is carried on a wedge plate (64) at the port side of the member carrying the control column.
- 23. For vertical photography, a camera bead sight is mounted near the remote controller wedge plate; the sight when not in use is arranged to fold downwards for stowage. A Mk.IA camera sight which is used in

- conjunction with the bead sight, is attached below the fuselage structure inside the fairing adjacent to the undercarriage leg. A window in the fairing immediately below this sight is protected with a sliding cover which is operated by means of a control knob (65) at the lower edge of the instrument panel. The cover is opened by moving the control over to the left.
- 24. For oblique photography, the camera is sighted by means of a ring and a centre spot (66) marked on the top rear window in the port sliding door of the cockpit and by four marks stencilled on the fairing of the port front wing strut; these marks indicate sighting angles of 10°, 15°, 20° and 25° respectively to agree with the initial setting of the camera. For correct sighting the sliding door should be in the top closed position.
- 25. Camera gun controls. When the G.22 type gun training camera is fitted to the root end of the starboard plane the shutter is operated pneumatically by the gun firing control (12) on the spade grip of the control column. The camera gun loading handle is mounted below the instrument panel on the starboard side of the cockpit and is connected to the camera by a cable control. The sights for use with this camera are the same as those used for the Browning guns (see para.23).
- 26. R/T Equipment. A combined short wave R/T receiver and transmitter is mounted at the back of the rear cockpit. An R.3002 unit is also carried.
- 27. Access to cockpits. Steps enclosed in the undercarriage port fairing enable the pilot to gain entrance to the front cockpit. The rear cockpit is entered from the starboard side.

SEATING AND EXITS

- 28. Front cockpit enclosure. The sliding roof (1) over the front cockpit is held closed by a centre catch (2), and a catch (3) on the port side retains the roof in the open position. The sliding doors on each side of the fuselage can be locked in any one of three positions from inside the cockpit by spring-loaded bolts operated by a leather tab (4). Access to these tabs from outside the cockpit is obtained by first opening the sliding panel in the upper framework of the doors.
- 29. Seat control. The seat (6) is adjusted for height by rotation of the handwheel (7) at the starbaord side of the cockpit. The padded arm-rests (8) may be hinged downwards by applying backward pressure to the ends.
- 30. <u>Harness.</u> Sutton harness is released by the control knob (96) at the starboard side of the pilot's seat. The seat in the rear cockpit has leg straps only.


MISCELLANEOUS


- 31. Cockpit temperature controls. Warm air is admitted into the cockpit by pulling "out" the control knob (43) on the instrument panel; the degree of cooling is governed by the control knob (44) which must be lifted before it can be operated.
- 32. Axe stowage. An axe (45) is stowed directly behind the pilot's seat on the starboard side.

- 33. First-aid outfit. A first-aid outfit is stowed behind the port inspection door in the rear cockpit.
- 34. Compass lamp and dimmer switch. The lamp (41) to illuminate the P.4 compass is mounted, below the oil heating control (33), behind the instrument panel. The dimmer switch (42) for the lamp is at the extreme starboard side of the instrument panel.
- 35. Instrument panel illumination. The lamps (39 and 40) directly behind the pilot's seat are controlled, for instrument panel lighting, by the dimmer switches (37 and 38) at the lower edge of the instrument panel near the centre.
- 36. Armour plating. The structure above the front and rear cockpits is built to form a crash pylon and the bulkhead (61) is armour plated. There is also armour plating below the pilot's seat and behind the rear cockpit. A sliding panel (60) covering an aperture (32) at the port side of the armour plated bulkhead (61) is opened by pulling the starboard ring (63), and closed by pulling the port ring (62), both of which are at the rear of the seat, as shown in fig. 5.
- 37. Ballast. 140 lb. of ballast is carried above the forward end of the engine mouting on Lysander IIIA aeroplanes and 60 lb. of ballast in the same position on Lysander III only, this latter being necessary only when twin Browning guns are mounted in the rear cockpit. In the case of Lysander IIIA only, ballast is not to be carried on the rear mounting at the base of the fin, and no provision is made for the carrying of ballast weights on the starboard side of the fuselage near the fuel tank.
- 38. Locking tubes for aeroplane controls. Tubes for locking the control column and rudder bar in the neutral postion are stowed in a canvas bag kept behind the door on the starboard side of the rear fuselage. When in use the ends of two tubes engage slots provided in the foot plates; the other two tubes are clipped to the starboard and rear cockpit coamings respectively (see Sect.4, Chapter 2).

Pilot's instrument panel - view to starboard

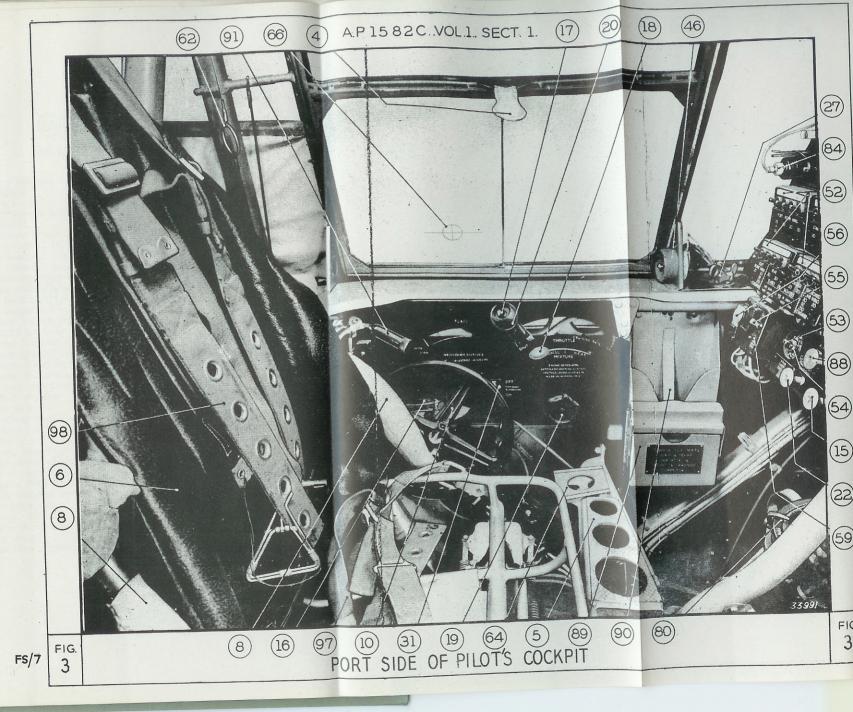
- 9. Control column
- 11. Brake control and parking lever
- 12. Gun selector control pushbutton
- 13. Triple pressure gauge
- 14. Rudder bar footplate
- 15. Rudder bar control knob
- 21. Carburettor air-intake heat control knob
- 22. Carburettor slow-running cut-out control knob
- 26. Engine starting pushbutton
- 28. Fuel priming pump
- 29. 3-way priming cock
- 30. Fuel pressure gauge
- 33. Oil heating control knob
- 34. Oil pressure gauge
- 35. Oil temperature gauge
- 36. Engine-speed indicator
- 37. Dimmer switch for instrument panel floodlamp port
- 38. Dimmer switch for instrument panel floodlamp starboard
- 41. Compass lamp
- 42. Dimmer switch for compass lamp
- 43. Cockpit heating control knob
- 44. Cockpit cooling control knob
- 46. Landing lamp switch
- 47. Forced landing flare release
- 48. Gun sight socket
- 49. Gun sight dimmer switch
- 50. Gun sight terminal block
- 51. Ring sight
- 52. Bomb selector switches
- 53. Bomb nose fuzing switch
- 54. Bomb tail fuzing switch
- 55. Bomb jettison master switch
- 56. Flap over bomb jettison pushbutton
- 57. Bomb container jettison switchbox
- 58. Flap over bomb container jettison pushbutton
- 59. Bomb jettison switchbox
- 71 Panel for bomb distributor
- 72. Flying-instrument panel
- 73. Boost gauge
- 74. Cylinder temperature gauge
- 75. Starting magneto switch
- 76. Navigation and pressure head heating switchbox
- 77. Morsing key
- 78. Identification switchbox
- 79. Flap over R. 3002 pushbuttons
- 80. Compass
- 81. Compass deviation card holder
- 82. Aperture for clock
- 83. Main magneto switches
- 87. Air temperature gauge
- 88. Airscrew pitch control knob

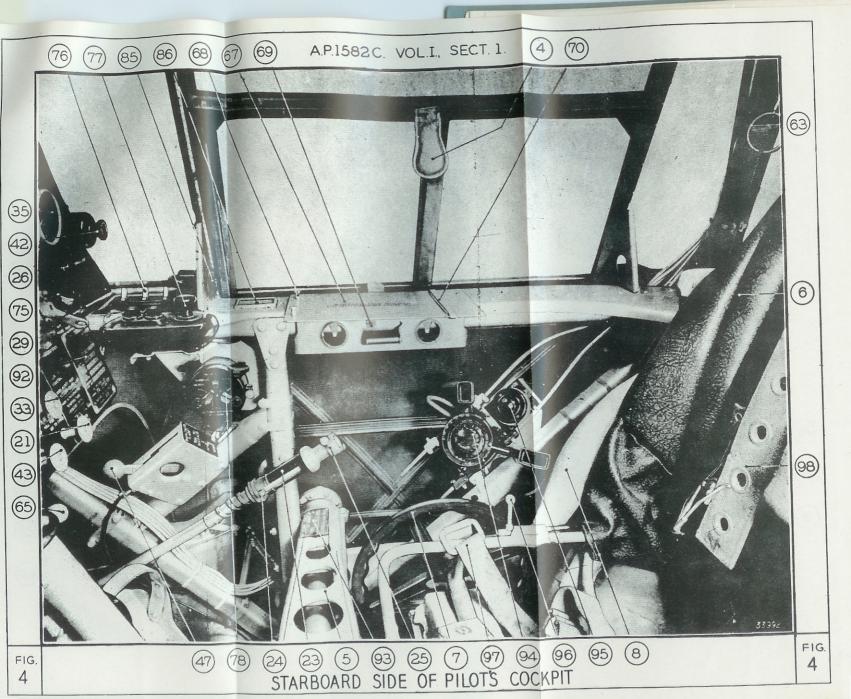
Pilot's instrument panel - view to port

9. Control column 11. Brake control and parking lever 12. Gun selector control button 13. Triple pressure gauge 15. Rudder bar control knob 21. Carburettor air-intake heat control knob 22. Carburettor slow-running cut-out control knob 26. Engine starting pushbutton 27. Master fuel cock control 28. Fuel priming pump 29. 3-way priming cock 30. Fuel pressure gauge 33. Oil heating control knob 34. Oil pressure gauge 35. Oil temperature gauge 36. Engine-speed indicator Dimmer switch for instrument panel floodlamp - port 37. 38. Dimmer switch for instrument panel floodlamp - starboard 41. Compass lamp 43. Cockpit heating control knob 44. Cockpit cooling control knob 46. Landing lamp switch 48. Gun sight socket 49. Gun sight dimmer switch 50. Gun sight terminal block 51. Ring sight 52. Bomb selector switches 53. Bomb nose fuzing switch 54. Bomb tail fuzing switch 55. Bomb jettison master switch 56. Flap over bomb jettison pushbutton 57· 58. Bomb container jettison switchbox Flap over container jettison pushbutton 59. Bomb jettison switchbox 65. Camera sight cover control 71. Panel for bomb distributor 72. Flying-instrument panel 73. Boost gauge 74. Cylinder temperature gauge 75. Starting magneto switch 77. Morsing key 79. Flap over R. 3002 pushbuttons 80. Compass 81. Compass deviation card holder 82. Aperture for clock 83. Main magneto switches 84. Bomb distributor plug 85. Rear occupants attention pushbutton 86. A.S.I. correction card holder 87. Air temperature gauge

Airscrew pitch control knob

Computer stowage case

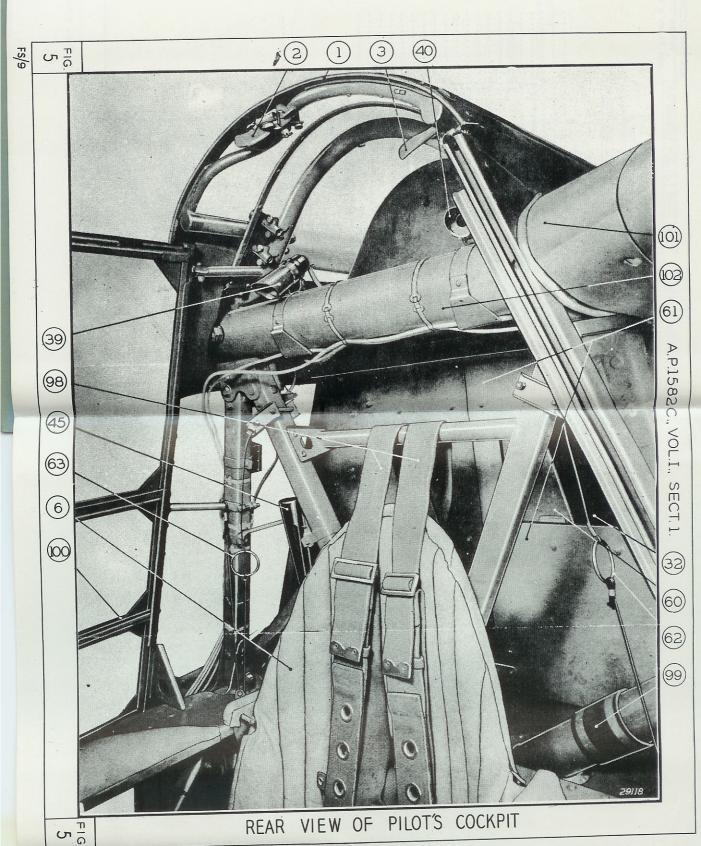

Map case


88.

89.

Port side of pilot's cockpit

- 4. Window release tab
- 5. Footplate
- 6. Pilot's seat
- 8. Armrests
- 10. Tail plane adjusting handwheel
- 15. Rudder bar control knob
- 16. Tail plane position indicator
- 17. Bomb firing pushbutton
- 18. Mixture lever
- 19. Throttle friction control handwheel
- 20. Throttle lever
- 22. Carburettor slow-running cut-out control knob
- 27. Master fuel cock control
- 31. Fuel contents gauge illumination switch
- 46. Landing lamp switch
- 52. Bomb selector switches
- 53. Bomb nose fuzing switch
- 54. Bomb tail fuzing switch
- 55. Bomb jettison master switch
- 56. Flap over bomb jettison pushbutton
- 59. Bomb jettison switchbox
- 62. Armour-plated panel port control ring
- 64. Camera controller wedge plate
- 66. Camera sight for oblique photography (in port window only)
- 80. Compass
- 84. Bomb distributor plug
- 88. Airscrew pitch control knob
- 89. Computer stowage case
- 90. Map case
- 91. Telephone-microphone socket
- 97. Leg straps
- 98. Shoulder straps



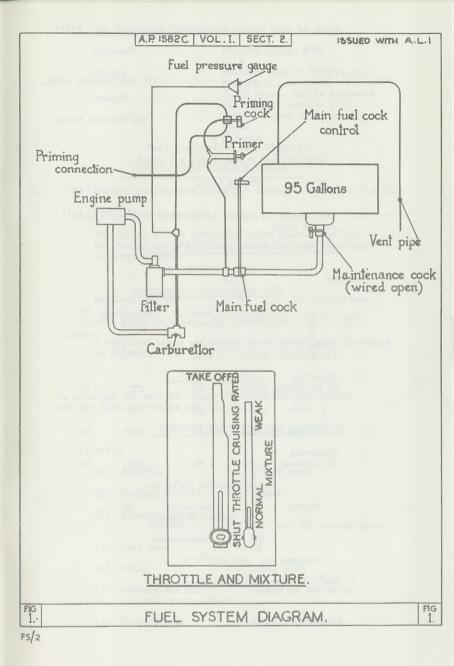
Starboard side of pilot's cockpit

- 4. Window release tab
- 5. Footplate
- 6. Pilot's seat
- 7. Pilot's seat adjusting handwheel
- 8. Armrests
- 21. Carburettor air intake heat control knob
- 23. Gill control indicator sleeve
- 24. Gill control indicator pointer
- 25. Gill control handle
- 26. Engine-starting pushbutton
- 29. 3-way priming cock
- 33. Oil heating control knob
- 35. Oil temperature gauge
- 42. Dimmer switch for compass lamp
- 43. Cockpit heating control knob
- 47. Forced landing flare release
- 63. Armour-plated panel starbaord control ring
- 65. Camera sight cover control
- 67. Hinged writing pad holder
- 68. Writing pad fasteners
- 69. Pencil stowage
- 70. Elastic band
- 75. Starting magneto switch
- 76. Navigation and pressure head heating switchbox
- 77. Morsing key
- 78. Identification switchbox
- 85. Rear occupants attention pushbutton
- 86. A.S.I. correction card holder
- 92. Engine data plate
- 93. Gill control indicator plate
- 94. Wireless remote controller
- 95. I.C.W. switch
- 96. Harness release control knob
- 97. Leg straps
- 98. Shoulder straps

Rear view of pilot's cockpit

- 1. Sliding roof
- 2. Sliding roof centre catch
- 3. Sliding roof port catch
- 6. Pilot's seat
- 32. Aperture in armour-plated bulkhead
- 39. Instrument panel floodlamp
- 40. Instrument panel floodlamp
- 45. Axe
- 60. Sliding panel in armour-plated bulkhead
- 61. Armour-plated bulkhead
- 62. Armour-plated panel port control ring
- 63. Armour-plated panel starboard control ring
- 98. Shoulder straps
- 99. Fuel tank filler neck
- 100. Starboard sliding window
- 101. Port main plane leading edge
- 102. Centre section front spar

AIR PUBLICATION 1582C
Volume I
and Pilot's Notes


SECTION 2

LIST OF CONTENTS

	Para.
Engine Data	1 2 3 4 5 6 7 8 9 10 11 12 13 4 15 16 17 8 19
Fuel and oil capacities and consumption	20

LIST OF ILLUSTRATIONS

			Fig
Fuel	system	diagram	 1

May, 1941.

AIR PUBLICATION 1582C.

Volume I

and Pilot's Notes

SECTION 2

HANDLING AND FLYING NOTES FOR PILOT

ENGINE DATA.

- (i) The Mercury XX engine is operated on 87 or higher octane fuel.
 - (ii) The cockpit data plate is as follows .-

ENGINE MERCURY XX

MAX. OPERATIONAL LIMITATIONS.

	PIPA	Le OF LINA	TIONAL DINITA	TTOING	
		R.P.M.	Boost lb/sq.in	Temperature Cylr	°C Oil inlet
Take (3 m	-off inutes)	2,650	+ 41		
	bing r.limit)	2,400	+ 41	235	80
Cruising	Rich	2,400	+ 24	190*	70
Cru	Weak	2,400	+ 1/2	190*	70
	gency inutes)	2,750	+ 47	235	90
		Oil pr	essure lb/sq	.in.	
	Normal	80	Emergency Minm. (5 min	70 s.)	

Oil inlet temperature

Minimum for take off °C 5

* 200°C for target towing duties only.

(iii) The following limitations should also be noted .-

Take-off

Minimum r.p.m. 2180

Diving

Maximum boost + 411b/sq.in.
Maximum r.p.m. 3,120
2,750 r.p.m. may be exceeded
only for 20 seconds with
throttle more than one-third
open.

Fuel pressure 13 to 3 lb/sq.in.

FLYING LIMITATIONS AND SPEEDS.

- 2. (i) Maximum permissible speed for diving. 300 m.p.h. A.S.I.R.
 - (ii) Bomb clearance angles.

The angles of the aeroplane datum lines, from the horizontal, at which bombs would foul the structure in dropping are.-

<u>Dive</u> <u>Bank</u>
Fuselage carrier 79° No limitations.

Stub plane carriers No limitations

13°

A margin of safety well within these angles must therefore be allowed.

PRELIMINARIES.

On entering the cockpit, close the hood and side panels and see that the brakes are on.

STARTING THE ENGINE AND WARMING UP.

- 4. (i) Set:-
 - (a) Throttle 2 inch open
 - (b) Mixture control NORMAL
 - (c) Airscrew pitch control Pull out for coarse pitch
 - (d) Fuel cock ON
 - (e) Gills Fully OPEN
 - (f) Carburettor air Pushed in for cold. intake heat control-
 - (g) Priming cock PRIME CARBURETTOR.

A.P. 1582C. Vol. I, Sect.2.

- (ii) Unscrew and operate the priming pump until a sudden increase in pressure is felt.
- (iii) Turn the priming cock to PRIME ENGINE.
- (iv) Give the engine 4 strokes of the priming pump if hot or 8 strokes if cold. At the same time with the ignition switches OFF, turn the engine by electric starter or by hand until priming is completed.
- (v) Close the priming cock and screw down the priming $\operatorname{pump}_{\bullet}$
- (vi) Switch ON the main ignition switches and the starting magneto.
- (vii) Press the starter button (the starter should not be used continuously for more than 10 seconds with an interval of at least 10 seconds between each attempt.)
- (viii) As soon as the engine is firing evenly, switch OFF the starting magneto and turn on the oil heating by pulling out the control knob.
 - (ix) Let the engine tick over slowly for about 5 minutes then open up to a fast tick over until the oil inlet temperature has reached 5°C.
 - (x) During warming up, the carburettor air intake heat control may be pulled out to admit warm air during cold weather, but it must be pushed in to admit cold air before opening up the engine.
 - (xi) Before opening up, push in the oil heating control knob.

TESTING ENGINE AND INSTALLATIONS.

- (i) While warming up, make the usual tests of temperatures pressures and operation of controls. Brake pressure should be at least 100 lb/sq.in. and after a few minutes the airscrew control should be pushed in the fine pitch.
 - (ii) After warming up, open up to about 1800 r.p.m. and then change to coarse pitch. This should cause a large drop in r.p.m. Then return to fine pitch and the r.p.m. should return to 1800.

(iii) Open the throttle to the CRUISING position and check each magneto for even running.

The drop in r.p.m. should not exceed 100.

(iv) Open the throttle fully and check boost, oil pressure and r.p.m.; the latter should be 2500-2600.

FINAL PREPARATION FOR TAKE-OFF - DRILL OF VITAL ACTIONS.

6. Drill is "T.M.P. fuel and gills"

T - Tail actuating wheel - Set pointer to TAKE-OFF

M - Mixture control - NORMAL

P - Pitch - Control pushed in for fine pitch.

Fuel - ON Check contents of tank. The fuel gauge is situated just aft of the pilot to port, but it can be seen by him if the aperture in the armour plated bulkhead is open. There are two calibrations on the gauge, one for tail down and one for flying position. The gauge is not reliable below 15 gallons.

Gills - OPEN

TAKING OFF.

- 7. (i) The take-off is normal and there is little tendency to swing. The tail should not be lifted.
 - (ii) Do not start to climb until safety speed of 80 m.p.h. A.S.I.R. is reached.
 - (iii) A steep angle of climb can be obtained by climbing at 70 m.p.h. or even down to a minimum of 60 m.p.h. this is an emergency operation and should only be performed if necessitated by operational considerations. If engine failure occurs while climbing at this speed, the nose must be pushed down instantly, otherwise at least 600 feet will be lost before control is regained.

ENGINE FAILURE DURING TAKE-OFF.

- 8. (i) Fully wind back the tail-actuating gear wheel.
 - (ii) Push the nose down and glide at 80 m.p.h. A.S.I.R. as close to the ground as possible.
 - (iii) Switch OFF the ignition and turn OFF the fuel.

CLIMBING.

9. The best climbing speed with the throttle in the CRUISING position is 110 m.p.h. A.S.I.R. and the aeroplane must not be climbed continuously at less than this speed.

GENERAL FLYING.

- 10. (i) The controls are not well harmonised, the rudder being light, ailerons heavy, and elevator too heavy at or near maximum angle.
 - (ii) The flying characteristics at very low speeds are such that a foolhardy pilot might be tempted to take liberties to which no aeroplane can with safety be subjected. Particular reference in this respect is made to stalled take-offs and climbs, stalled approaches to land, and low flying at too low an airspeed. The stall is delayed to an exceptionally large angle of attack, and can seldom be reached. But if this aeroplane does stall, a wing drops very sharply and control is entirely lost until speed is regained after loss of 1,000 feet.

STALLING.

- 11. (i) During straight stall tests it will be found that it is practically impossible to stall this aeroplane.
 - (ii) With throttle back, the minimum speed is about 60 m.p.h. A.S.I.R. The nose does not sink, nor is there any tendency for a wing to go down, with the control column fully back.
 - (iii) If this is done with full throttle, the aeroplane normally does not stall. It assumes a very steep attitude and the speed remains between 40 and 45 m.p.h. A.S.I.R., the nose moving gently up and down through about 5 to 10 degrees. It remains laterally stable with the stick fully back.
 - (iv) The aeroplane can be made to stall with engine on but this should not be attempted. At the stall a wing drops and the aeroplane starts a slow right-hand spiral.

SPINNING AND AEROBATICS.

12. Spinning and aerobatics are not permitted.

DIVING.

13. (i) For engine and speed limitations, see paras. 1 and 2.

- (ii) The airscrew must always be in coarse pitch for diving.
- (iii) At high speeds the aeroplane must not be subjected to sudden manoeuvres or heavy loads.
- (iv) At speeds above 250 m.p.h. A.S.I.R., the tail actuating wheel must be wound back slightly, but it should be used with great care.

APPROACH AND LANDING.

- 14. (i) Reduce speed to 120 m.p.h. and check brake pressure.

 As soon as the engine is throttled back, the aeroplane becomes very nose heavy.
 - (ii) The gliding speed can be varied from as high as is desired down to about 70 m.p.h. A.S.I.R. At about this speed the aeroplane has a high rate of descent, and only gentle turns should be attempted, care being taken not to stall. At about 80 m.p.h. A.S.I.R. the glide is much flatter, and turns up to about 45° may be made with safety.
 - (iii) On a straight glide, when the speed drops to about 85 m.p.h. A.S.I.R., the inner slats will open a little, this lowering the flaps to a certain extent. The lower the A.S.I.R. is below this point, the more the flaps will be lowered, and therefore the steeper the glide. At about 95 m.p.h. A.S.I.R. the inner slats will be closed and the flaps will be fully retracted, thus allowing the gliding angle to be comparatively flat.
 - (iv) The aeroplane can be sideslipped up to any normal degree of bank.
 - (v) Carry out the drill of vital actions "T.M.P."
 - T Tail actuating gear wind back until aeroplane
 will fly "hands off" at
 75-80 m.p.h.
 - M Mixture control NORMAL
 - P Pitch Control pushed in for fine pitch.

The automatic operation of the flaps causes them to take up their own position for the various conditions of flight.

At normal approach speed, 80 m.p.h., they will be approximately half down.

- (vi) Engine assisted approach and landing. Approach at 80 m.p.h. with engine running at about 1200 r.p.m. This will provide ample float when holding off. The landing is straightforward and the flaps come down fully as the aeroplane flattens out and slows down to landing speed. The throttle should not be finally closed until flattening out has been completed. Care must be taken not to hold off too high. The brakes may be applied, gently at first, soon after landing.
- (vii) Glide approach .- Correct speed 85 m.p.h. A.S.I.R.
- (viii) The Greeper. Correct speed 65-70 m.p.h. A.S.I.R. Do not wind the tail actuating gear more than about 1/3 to 1/2 back, otherwise the aeroplane will become uncomfortably tail heavy when the engine is opened up in the last stages of the approach. Carry out the landing in the normal manner, closing the throttle only after making contact with the ground. The aeroplane will land tail down as soon as the control column is pulled back.

MISLANDING.

Open the throttle enough to maintain flying speed while the tail actuating wheel is wound forward. It may then be opened fully.

On no account must the throttle be opened fully with the tail actuating wheel wound back.

LANDING ACROSS WIND.

Cross-wind landings can be made satisfactorily, although they should not be attempted if the speed of the surface wind exceeds 20 m.p.h.

PROCEDURE AFTER LANDING.

17. Before taxying in, open the cowling gills fully.

After taxying in, change to coarse pitch (This may be done while taxying in so as to avoid the necessity of opening up the engine on the tarmac).

Stop the engine by pulling out the slow-running jet cut-out control until the engine stops, and then switch OFF the main iginition switches.

Turn OFF the fuel cock.

15.

16.

FLYING IN BAD WEATHER.

18. Leave the airscrew in coarse pitch, provided that the engine continues to run smoothly.

The aeroplane can be flown with care at speeds down to about 70-75 m.p.h. A.S.I.R.

POSITION ERROR TABLE.

19. The corrections to the A.S.I.R. for position error are as follows:-

At 40 m.p.h. A.S.I.R. add 15 m.p.h.

At 60 m.p.h. A.S.I.R. " 11 m.p.h.

At 80 m.p.h. A.S.I.R. " 6 m.p.h.

At 100 m.p.h. A.S.I.R. " 2 m.p.h.

At 120 m.p.h. A.S.I.R. " O m.p.h.

At 140 m.p.h. A.S.I.R. subtract 4 m.p.h.

At 160 m.p.h. A.S.I.R. " 6 m.p.h.

At 180 m.p.h. A.S.I.R. " 8 m.p.h.

At 200 m.p.h. A.S.I.R. " 10 m.p.h.

FUEL AND OIL CAPACITIES AND CONSUMPTION.

20. (i) Fuel One tank. Capacity 95 gallons

(ii) Oil One tank. Capacity 9 gallons

(iii) Fuel Consumption at S.L.

At maximum r.p.m. and boost for	Consumption Galls/hr.
Climbing	68
Cruising Rich	58
" Weak	35 1
Emergency	79

21. NOTES ON TARGET TOWING.

- (i) When launching, exchanging, hauling in cable, or releasing targets, the aeroplane should be flown at 80 to 85 m.p.h. I.A.S. at not less than 700 feet. The airscrew should be temporarily in FINE pitch. Gentle turns are advisable when exchanging targets.
- (ii) When towing, the rate of turn must not exceed rate 2.
- (iii) Rapid manoeuvres must never be made on aeroplanes equipped for towing.
- (iv) For towing only, the permissible cylinder head temperature is raised to 200°C.
- (v) The strength of the 10 cwt cable permits towing up to the following speeds.-

Target	I.A.S. (m.p.h.)
4 ft. open sleeve	140
4 ft cone (astern attack)	150
3 ft cone (" ")	200
4 ft. (closed) low drag sleeve	200

(vi) The approximate endurance of the aeroplane is:At 2,400 r.p.m., + $2\frac{3}{4}$ lb/sq.in. RICH $1\frac{1}{2}$ hours.